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Abstract-In the paper an analysis is made of oblique shock waves in a real gas flow. Expressions are 
obtained which describe the behaviour of the parameters such as pressure and temperatures in a shock 
wave. The expressions differ from the conventional ones by the fact that the present mathematical 
description of the effects in a shock wave involves various coefficients and quantities describing a real gas. 

A method is presented for determination ofcorrection factors before and aftera shock wave. An expression 
is derived for a deflection angle. Then analytical expressions are obtained which define pressure, density 
and temperature discontinuities. 

A calculation procedure is described. 

NOMENCLATURE 

gas velocity [m/s] ; 
flow density [kg/m3]; 
flow pressure [N/m’] ; 
specific gas volume [m3/kg]; 
flow temperature [OK]; 
stagnation temperature [OK]; 
compressibility coefficient at flow para- 
meters [p and T] ; 
gas constant [J/kg.g] ; 
adiabatic index of a real gas (a “tem- 
perature one”); 
mass heat capacity of a real gas at a 
constant pressure [J/kg . g] ; 
mass heat capacity of a real gas at a 
constant volume [J/kg . g] ; 
adiabatic index of a real gas; 
mean-integral value of an index (“volu- 
metric”) of an isentrope of a real gas; 
sound velocity in a real gas [m/s] ; 
sound velocity ratio in real and ideal 
gases (at a uniform temperature); 
critical velocity of a real gas [m/s] ; 
critical velocity ratio of real and ideal 
gases (at a uniform temperature To). 

I. TOTAL IMPULSE OF A GAS FLOW 

9 =;w +pF. (1) 

FOR THE flow in a cylindrical tube involving heat 
transfer it is possible to write 

4=fw,+p,F=;w,+p,F. (2) 

We have in [l] 

and 

K-l 
-= l+= 

T [ 
;=qz- Z& I( . 1 -A 

‘f,g+’ -I > (4) 
T 

where 

+ @CT - z,,) Tel 1 1 + 1 (5) 
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4.i = z,” (PTL - 
11 

-l (6) 

i (7) 

xc 5 
cp - Qp’ 

Since p/p = zRT and w2 = A’&, then taking 
into account expressions (3) and (4) we have 

f =g,+,,= 

Aacr + 
k+l z 1 
-g-.-pcr.i 

-1 

11 
. (9) 

For an ideal gas flow (x = k, z = z. = jiT = 
<,, = 1) expression (9) passes over to the known 
relation earlier obtained by B. M. Kiselev 

yideal G 
=;W+PF= 

k+l G 
2k .; %B (10) 

where 

B = &deal t j+. 

Ideal 
(11) 

Equation (9) is of great importance in design 
problems on shock waves, on flows in the pre- 
sence of heat transfer and in some other cases. 

IL OBLIQUE ADIABATIC SHOCK WAVFS IN HIGH- 
PRESSURE ZONES 

In [l] we have 

wt - w: = 2 RjiT +(Tl - T2) - RT, 

b2 - Z1)T, 1 . (12) 

In a direct shock wave there takes place a dis- 
continuity of a flow velocity from w1 to w2. 
In an oblique shock wave only a normal flow 
velocity component (w,) from win to wzn is 
subjected to the discontinuity. 

It goes without saying that w2,, < win, and the 
tangential velocity component w, in a shock wave 
does not vary ([2], Fig. 1). 

Bearing in mind that w: - w: = w&, - w:,, 
as well as the expressions following from the 
state equation 

T,= ” 
~1 - z,R 

and 

p2 T2=-, 
PZZZR 

equation (12) is reduced to the form 

2 
Win 

x - 1 Pz Pl 
+ ; tzl - Z2)T, 7 1 I - -. (13) 

Pl P2 

Using the momentum law in the form 

Pz - Pl = PW(Wl” - WZn) (14) 

and the continuity equation for an oblique shock 
wave 

PlWln = PZW2” (15) 

as a result of simultaneous solution of (13), (14) 
and (15) upon transformations we arrive at 

(z-l)(E+l)= 
FT 1 
q + $‘, - ‘2)T, 

x-1 Pz 1 I. x- - (16) 

Let us elucidate how p2/p1 depends on the 
velocity coefficient up to a shock wave Aln in an 
oblique shock wave for a real gas flow. 
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Neglecting heat transfer during a shock wave, 
i.e. assuming T, constant, write down expression 
(4) in the form 

where 

k 1 x-l 
(18) 

c = <a. -.-.-. 
k+l jiT x 

According to the kinetics of the flow (Fig. 1) 

Wl - Wl” + w: 2_ 2 

w: = w:, + w:. > 

(19) 

FIG. 1. 

Taking into account that 

1 k x-l 
gr=zr=g=g k+lx 

as well as regarding for expression (19) upon a 
number of transformations we have 

a2 - + t,‘, . J- 

k 
CT - Win . W2n 

x-l 2 
p,.k+l.x.w. 

P-7 

Equation (20) relates a critical velocity to the 
product of velocities before and after an oblique 
shock wave in a real gas flow. 

It is possible to write (Fig. 1) 

W In = wl. sin c1 

W Zn = W2 * Sin/? 

. 1 

w, = WI cosa = w2 cosa 
(21) 

p=Ct-0. 

The velocity acr is averaged. 
Take the geometric mean relation for acr, i.e. 

assume that 

acr = J(alcr. a2A (22) 

consequently 

t,‘, = 51cr. 52cr (23) 

By analogy with that presented for a direct shock 
wave [4] it is possible to write 

Wl” * Wzn = 
Pz - Pl 

Pz - PI’ 
(24) 

Solving simultaneously equations (20)--(24) upon 
transformations we obtain 

pz = 51cr 

Pl 5 Zcr 

X 
n: . sin 2a 

1 - &(1/j&) (k/k .+ 1) (x - 1)/x. A; cos ‘a’ 

(25) 

Passing again to equation (16) and taking into 
account equation (25) upon transformations, we 
arrive at 

Pz 

Pl Ii [ 
2; 

x-l 
-= ih + 6% - Z2hI.---- 1 I - x+1 

x 

x(x- l)-‘.I:.sin2cr. 
[ 

r 2 
e lcr 



x(x_l)-‘-~fsin2a 1-7 
ilcr 

1 k X-l -1 -1 

x --~ 

j&k+1 x 
.n: cos 2cl >I I (26) 

Since 

T, P2 Pl Zl -- 

T,=p,‘p,‘Z, 5 -1 

X1ET . 
5 i 

(30) 
then 2cr 

Relations (28)-(30) are obtained as a result of 
further precision of the expressions obtained [4] 
for the ratio of the appropriate parameters in a 
direct shock wave. In [4] it was assumed that 

5 CT = t2cr 5% L i.e. a critical velocity of a real 
gas in a shock wave is assumed to be nearly 
constant while in precise equations (28)--(30) 
the critical velocity is a variable since the 
coefficient <,, is a function of a pressure and 
temperature. 

On the basis of equations (3), (20)-(23) we 
arrive at 

(27) 

Relations (25H27) are the main ones which 
describe a change in appropriate parameters 2 

(densities, pressures and temperatures) in an x 1,: cos2 a )C 5 
-1 

. A: . LE. sin’ o! 
oblique shock wave in a real gas flow. 5 2cr > 

At CI = 90” we arrive at the expression for a 5 

direct shock wave + A:.-'"'.coscl. 

5 
(31) 

2cr 

0 
flz 5 lcr 2 

=------ 

Pl direct c2cr 1 

Hence at c( = 90”, i.e. for a direct shock wave in a 
real gas flow we have 

e)direc, =,f ; [(PT + (zl I:,.,;; 
II, I, = 1. (32) 

(x-l)-l.L:.+-l 
I 

In [4] it has been shown that if the adiabatic 
curve equation in the form - 

2cr 

x{[x(2~-l)+l](x-l)-~-i: 
pi+ = const (33) 

5 
-1 

is applied to the real gas, then for a mean integral 
x+ (29) “volumetric” index of an adiabatic curve for a 

5 2crJ real gas the expression is obtained in the form: 
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-1 

+ zz 

The relationship between the angles p and a 
is obtained in the form: 

where ~1~ and pP are expressed by equation (7). 
For the ratio 5cr/<2cr upon a number of the 

appropriate derivations the following expression 
is obtained: 

x n-l 

r l&X 
;-A: h-1 < 

_L.!S[l _(L$L’-] (35) 

where n in this case is taken for the interval (O-l). 
With a sufficient accuracy when determining 

the ratio rcr/<2cr the values of T, and 1, may be 
calculated from the relation for an ideal gas 

k-l 2 
T, C Tl + - w 

2kR 1 
(36) 

and 

1 
k+l 

+:k_l (37) 

To find the coefficients <icr and C2cr by the 

1 2 1 
x (Zl - ZOIT, - ‘x- 1Mfsin’a 1 

tga. (42) 

Let us now determine the values of shock 
waves [5] for real gas parameters. 

The change in the velocity of a shock wave is 

Aw = wl,, - w2” = win . (43) 

On the basis of expressions (3), (20) (21), (39) 
upon a number of transformations, expression 
(43) may be presented thus: 

1 2 C2 
sincr---------” 

h4: sin a k + 1 yf 

known ratio <lcr/t2cr it is possible to use equation 
(23) if cf is preliminarily determined. 

It is easy to derive a convenient expression for 
finding r,‘,. 

k 5c2, x -:sina . (44 
XpT 

Relation (3) conformably to the adiabatic flow 
The change in a prepure in a shock wave is 

(when T, is constant) is presented as: AP = ~2 - PI. 

We have obtained [6] 

a2 = y2kRT 

or 

(38) With regard for expressions (14) (15), (42) we 
have 

AP = PI& 
I 

1 
1 - 

2 er 

(39) MT sin’ak+lz 

(40) Fk . (ZO - Zl)T, 

1 
Solving simultaneously equations (38) and (40) 
we arrive at k. (45) 

(41) The change in the density in a shock wave is 

where yCr is expressed by equation (6). AP = ~2 -PI 



1108 E. A. ORUDZHALIEV 

or with regard for expression (15) it is possible to 
write 

Ap=pr $1. 
( > 

Proceeding from the simultaneous solution of 
equations (42) and (44) after determining wrn/ 
wzn and substituting it into expression (46) we 
arrive at 

Ap=pr l- 
i 

1 

Mf sin’ a k + 1 y: 

1 x - 1 k t:r 
k+lx& 

-- 

- x-l 

X 

(47) 

The change in the temperature in a shock wave 
is 

AT= T, - Tl = 
1 (‘- l)kyZTMZ 

1 + b,,,, 2x ’ ’ i 

1 2 e& 
M:k+ly; 

(48) 

III. METHODS OF USE OF RELATIONS OBTAINED 
AND SEQUENCE OF CALCULATION 

Assume that the problem on determination of 
values of shock waves for different parameters 
expressed by relations (44X (45), (47) and’(48) is 
stated. The initial quantities, i.e. wi, pi, Tl as 
well as the angle a and the index of the adiabatic 
curve of a real gas k are prescribed. 

Let us determine different quantities entering 
into equation (44). 

According to equation (44) write down 

w: 
L’:kRT, 

(49) 

where 

11 
-1 

h-)1 - qP,)l . (50) 

The coefficient zl is determined from the gas 
compressibility diagram by pi and T,, and the 
coefficients (Q, and (pu,), by expressions (7). If 
there are no data on cp, then it is possible to take 
x = k with a sufficient accuracy. Partial deriva- 
tives entering into expression (7) are found by 
the graphical differentiation method, the method 
presented in [7] (Fig. 2), being successful. 

Z 

f im _p 
I 

I_:)& p 
P prass 

FIG. 2. 

The expression for jir entering into expression 
(44) is found as 

llr = 3CWfJ + &)l - 21. 
Bearing in mind that 
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in this case the quantities @r)o and (j&)1-2 are 
respectively found as 

(PT)O = zo - PO $ 0 (51) 
T 

@T)I - 2 = i[@T)l + bT)21* (52) 

To determine the coefficients pr and CL,, it is 
possible to use also the data from [S] where pT 
and pP are designated through zP and zT, 
respectively. These functions presented in [S] 
with a reference to W. C. Edmister’s works and 
related to an eccentricity factor are given by 
R. Reid and Volbert in the form 

ZT = z; + oz;. (53) 

ZP = zap + COz;. (54) 

Numerical values of o are given for different 
gases in Appendix to [8], and the functions z:, 
zk, zj and zi depending on a reduced temperature 
and a reduced pressure are presented in the 
appropriate diagrams and tables [a]. 

In order to calculate (~1~)~ and (jLr)1_2 it is 
necessary to know the stagnation parameters 
after a shock wave (parameters before a shock 
wave are prescribed). With a sufficient accuracy 
these quantities may be taken for an ideal gas 
flow [3] 
where 

(55) MfidoaI = j$T 
1 

(PZhdeal = PI= 
( 

$IM:idcnl sin2 O1 - ’ 
> 
(56) 

xsin2a- >( 2 
. k_l 

1 

’ Mfidea,. sin’ a 
+1 . >I (57) 

Using expressions (53)-(57), the value of jiT is 
found by equation (21). 

The difference (z. - zl)rI is found in the follow- 
ing way. From the compressibility diagram the 
value of z. is found by (PO)ideal and Tr, and the 
value of zl, by p1 and TI. 

The coefficient t,“, also entering into equation 
(44) is determined by formula (41). 

According to equations (‘I) and (8) the 
coefficients (prJcr are expressed in the form: 

T 

az 0 i 

(58) 

(I& = z,, + T,, ZT * 

P 

In order to find these quantities it is necessary 
to have the values of critical flow parameters, p,, 
and T,, which may be found from the expressions 

/ 2 + 

(59) 

T,, = To.--4 
fi+l 

After determining Aw, according to expression 
(44) it is easy to evaluate a change of a pressure 
in a shock wave, i.e. A, by formula (45), in this 
case 

Pl 
Pl =-* 

z,W 
The change in a density Ap and a temperature 

AT in a shock wave is found by formulae (47) 
and (48). 
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QUELQUES RELATIONS POUR LES ECOULEMENTS SOUS HAUTE PRESSION AVEC OU 
SANS TRANSFERT DE CHALEUR 

R&urn&--On a fait dans cet article l’analyse des ondes de choc obliques dans des 6coulements de gaz 
r6els. On a obtenu des expressions qui ddcrivent le comportement des paramktres tels que la pression et 
les temp6ratures dans une onde de choc. Les expressions diffkrent de celles conventionnelles par le fait que 
la description mathbmatique des effets dans une onde de choc implique diffkrents coefficients et quantitts 
caractkristiques d’un gaz rtel. 

On prtsente une mtthode de d&termination des facteurs de correction avant et aprb une onde de choc. 
Une expression est d&iv&e pour un angle de dkflection. On obtient ensuite des expressions analytiques 
qui dtlinissent les discontinuitts de pression, densitt et temptrature. 

On decrit une prockdure de calcul. 

BEZIEHUNGEN FUR STROMUNGEN BE1 HOHEN DRUCKEN MIT UND 
OHNE WARMEUBERGANG 

Zosllmmenf aaarmg-In einem str6menden, realen Gas werden schtige Stosswellen untersucht. Man 
erhiilt Ausdrilcke, die das Verhalten von Parametem, wie Druck und Temperatur in einer Stosswelle 
beschreiben. Die Ausdriicke unterscheiden sich von den bisherigen darin, dass die vorliegende 
mathematische Eeschreibung der Effekte in einer Stosswelle verschiedene Koefizienten und Griissen 
umfasst, die auf reales Gas zutreffen. 

Eine Methode zur Bestimmung von Korrekturfaktoren vor und hinter einer Stoffwelle wird angegehen. 
Ein Ausdruck & den Stossfrontwinkel wird abgeleitet. Dann erhUt man analytische Ausdriicke, die 
Druck-, Dichte- und Temperaturspriinge bestimmen. 

Ein Rechenbeispiel wird ehenfalls gegeben. 

HEICOTOPbIE SABBCIJMOCTM AJIFI IIOTOKOB BbICOKklX AABJIEHkIm 
IIPki HAJIBWiki II OTCYTCTBMM TEIIJIOOBMEHA 

AHHOT~QESI-B pa6oTe II~OBOAHTCR TeopeTmecKoe accnegosame KOC~IX cKa4XoB ~IIJIOT- 

HeHm B TegemK peanbHor0 raaa. IIonygeHbx paasepHyTbre sbrpameHsir4, XapaKTepHayrorqHe 
m3srerieriIiR napaMeTpoB, a HnreHHo nnoTHocTel, aasneH& II TeMnepaTyp B cHaqKe. 3~13 

BblpaHCeHKR 0TJlKYaH)TCH OT O~~IYHO IlpHMeHHeMblX TeM, 9TO B IIpeEIIOJlaraeMOM MaTeMaTH- 

YeCKOM OIlElCaHKM FiBJIeHKfi CKagKOB +irypHpyH)T paWIWiHbIe KOeCjj@W~HeHTbI II BeJIEiQ¶HbI, 

XapaKTepEliSyIo~Ke CBOtfCTBapeaJIbHOrO BTepMO~KHaMWIeCKOM CMBCJle raaa. 

AaH cnoco6 OIIpefleneHKX 8Ha'ieHIlti KOppeKTKpyIoWKX KO@+iI@eHTOB J&O II nocne 

CKa'lKa. BbIBeneHO BbIpameHMe RJIfl ylVIa OTKJlOHeHUR IIOTOKB. SaTeM IIOJIyseHbl PHaJlKTH- 

qecKKe BbrpameriHfl, 0npeRenmoqHe BenuguHbr cKaqKon ~JIOTHOCTEI II TemnepaTypbr B noToKe 
peaabHor raaa. 


